Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Viruses ; 15(4)2023 03 30.
Article in English | MEDLINE | ID: covidwho-2293804

ABSTRACT

Aiming to evaluate the role of ten functional polymorphisms in long COVID, involved in major inflammatory, immune response and thrombophilia pathways, a cross-sectional sample composed of 199 long COVID (LC) patients and a cohort composed of 79 COVID-19 patients whose follow-up by over six months did not reveal any evidence of long COVID (NLC) were investigated to detect genetic susceptibility to long COVID. Ten functional polymorphisms located in thrombophilia-related and immune response genes were genotyped by real time PCR. In terms of clinical outcomes, LC patients presented higher prevalence of heart disease as preexistent comorbidity. In general, the proportions of symptoms in acute phase of the disease were higher among LC patients. The genotype AA of the interferon gamma (IFNG) gene was observed in higher frequency among LC patients (60%; p = 0.033). Moreover, the genotype CC of the methylenetetrahydrofolate reductase (MTHFR) gene was also more frequent among LC patients (49%; p = 0.045). Additionally, the frequencies of LC symptoms were higher among carriers of IFNG genotypes AA than among non-AA genotypes (Z = 5.08; p < 0.0001). Two polymorphisms were associated with LC in both inflammatory and thrombophilia pathways, thus reinforcing their role in LC. The higher frequencies of acute phase symptoms among LC and higher frequency of underlying comorbidities might suggest that acute disease severity and the triggering of preexisting condition may play a role in LC development.


Subject(s)
COVID-19 , Thrombophilia , Humans , Post-Acute COVID-19 Syndrome , Gene Frequency , Genetic Markers , Cross-Sectional Studies , COVID-19/genetics , Genotype , Genetic Predisposition to Disease , Thrombophilia/genetics , Polymorphism, Single Nucleotide , Case-Control Studies
2.
Pharmacogenet Genomics ; 33(3): 41-50, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2279134

ABSTRACT

OBJECTIVE: The aim of the study was to investigate the gene polymorphisms of angiotensin-converting enzyme (ACE), angiotensinogen (AGT), and angiotensin type 1 receptor (AT1R) in association with coronavirus disease 2019 (COVID-19) mortality rates worldwide. METHODS: The prevalence of ACE I/D, AGT M235T, and AT1R A1166C alleles' frequencies in different populations was assessed. Data on COVID-19-related cases and deaths were acquired from the European Center for Disease Prevention and Control, which included weekly reports by country and continent. An Excel tool was developed to visualize the acquired data of mortality and incidence by classifying them by continent/country across specific periods of time. Spearman's nonparametric correlation was used to evaluate the association between country-based frequencies in RAS gene polymorphisms and COVID-19-related deaths. RESULTS: While China constituted the initial reservoir of COVID-19, incidence/mortality rates in Europe and America outnumbered the figures in the former. A clear association was identified between death rates and ACE D/I ( r = 0.3659; P = 0.033), as well as AGT A/G variants ( r = 0.7576; P = 0.015). Data on AT1R polymorphisms suggested no correlation with mortality rates. CONCLUSION: Our results demonstrated a significant disparity in COVID-19-related susceptibility and mortality among different populations and corroborate the importance of gene polymorphisms in predicting and consequently improving patients' outcomes.


Subject(s)
Angiotensinogen , COVID-19 , Peptidyl-Dipeptidase A , Humans , Angiotensinogen/genetics , China , COVID-19/genetics , COVID-19/mortality , Gene Frequency , Polymorphism, Genetic , Peptidyl-Dipeptidase A/genetics
3.
Immunol Invest ; 51(7): 1965-1974, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2270990

ABSTRACT

Patients immune phenotype/genotype data may be useful to understand the molecular mechanisms involved in SARS-CoV-2 infection and can contribute to the identify the different levels of disease severity. The roles of chemokines have been reported in the coronavirus-related diseases SARS and MERS and they may likewise play a critical role in the development of the symptoms of COVID-19 disease. We analyzed the association of the MCP-1-A2518 G, SDF-1-3'A, CCR5-delta32, CCR5-A55029 G, CXCR4-C138T and CCR2-V64I gene polymorphisms with COVID-19 severity to further unveil the immunological pathways leading to disease severity and death. Polymerase chain reaction(PCR)/Sanger sequencing analysis was performed for detection of the variations in 60 asymptomatic and 119 severe COVID-19 patients. In our study, we found that the frequencies of MCP-1 of GA genotype and G allele carriers were significantly higher in severe COVID-19 patients than the asymptomatic COVID-19 patients (p < .0001 and p: .005, respectively). However, no significant association was found for any of the other polymorphisms with the severity of COVID-19. Our findings suggest that there is a positive association between MCP-1-A2518 G gene variants with the severity of COVID-19. However, larger studies in different population which will focus on gene expression levels will help us to understand the capability of the mechanism role.


Subject(s)
COVID-19 , HIV Infections , COVID-19/genetics , Chemokine CXCL12/genetics , Gene Frequency , Genotype , Humans , Receptors, CCR2/genetics , Receptors, CCR5/genetics , SARS-CoV-2 , Severity of Illness Index
4.
Arch Razi Inst ; 77(6): 2291-2298, 2022 12.
Article in English | MEDLINE | ID: covidwho-2226513

ABSTRACT

Elevated Interleukin-13 (IL-13) may play an important role in the pathophysiology of COVID-19, yet, the attenuated response did not notice across all severe cases. Susceptibility to asthma in specific populations is associated with several SNPs of multifunctional cytokines, such as IL-13, IL-31 and IL-33. This prospective case-control study is designed to investigate the extent of genetic susceptibility in subsets of Iraqi patients with COVID-19 by targeting the variants of interleukin IL-13rs20541 polymorphism in relation to disease susceptibility and severity of clinical presentation. One hundred samples were obtained from the throat, nasopharyngeal and nasal swabs enrolled in this study. Eighty samples of the throat, nasopharyngeal and nasal localization swabs were obtained from patients with acute respiratory distress syndrome (ARDS) (both COVID-19 and non-COVID19 patients), while other 20 nasopharyngeal swabs were included as a healthy control group (AHC). Detection of IL-13rs20541 polymorphism was done by ARMS technique. The frequencies of GG- genotype in ARDS- patients with COVID-19, non-COVID19-, and AHC groups were respectively 14%, 12% and 3%, where, and as compared to the control group, showed a significant increase in COVID-19 patients. The AA- genotype in patients with COVID-19 group, non- COVID-19 group and healthy control group documented the frequency of 9%, 7%, and 14%, respectively, where the frequency decreased in the patient's groups as compared to the AHC group. Finally, and among the studied groups, an increase of AG- genotype (as rate OR=1.89) was documented compared to genotype GG and A-. Genetic polymorphisms in the IL-13rs20541 gene might influence its functions in patients with SARS-associated respiratory tract infection and thus might involve the pathogenicity of patients with COVID-19.


Subject(s)
COVID-19 , Interleukin-13 , Respiratory Distress Syndrome , Humans , Case-Control Studies , COVID-19/genetics , Gene Frequency , Genomics , Interleukin-13/genetics , Polymorphism, Single Nucleotide , Respiratory Distress Syndrome/genetics
5.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2225340

ABSTRACT

HLA genes play a pivotal role in the immune response via presenting the pathogen peptides on the cell surface in a host organism. Here, we studied the association of HLA allele variants of class I (loci A, B, C) and class II (loci DRB1, DQB1, DPB1) genes with the outcome of COVID-19 infection. We performed high-resolution sequencing of class HLA I and class II genes based on the sample population of 157 patients who died from COVID-19 and 76 patients who survived despite severe symptoms. The results were further compared with HLA genotype frequencies in the control population represented by 475 people from the Russian population. Although the obtained data revealed no significant differences between the samples at a locus level, they allowed one to uncover a set of notable alleles potentially contributing to the COVID-19 outcome. Our results did not only confirm the previously discovered fatal role of age or association of DRB1*01:01:01G and DRB1*01:02:01G alleles with severe symptoms and survival, but also allowed us to single out the DQB1*05:03:01G allele and B*14:02:01G~C*08:02:01G haplotype, which were associated with survival. Our findings showed that not only separate allele, but also their haplotype, could serve as potential markers of COVID-19 outcome and be used during triage for hospital admission.


Subject(s)
COVID-19 , Histocompatibility Antigens Class II , Histocompatibility Antigens Class I , Humans , Alleles , COVID-19/genetics , COVID-19/mortality , Gene Frequency , Haplotypes , HLA-DRB1 Chains/genetics , Russia/epidemiology
6.
Nucleosides Nucleotides Nucleic Acids ; 42(8): 571-585, 2023.
Article in English | MEDLINE | ID: covidwho-2212551

ABSTRACT

Oxidative stress (OS), which leads to DNA damage, plays a role in the pathogenesis of Coronavirus disease 2019 (COVID-19). We aimed to evaluate the role of DNA repair gene variants [X-ray repair cross complementing 4 (XRCC4) rs28360071, rs6869366, and X-ray cross-complementary gene 1 (XRCC1) rs25487] in susceptibility to COVID-19 in a Turkish population. We also evaluated its effect on the clinical course of the disease. A total of 300 subjects, including 200 COVID-19 patients and 100 healthy controls, were included in this study. These variants were genotyped using polymerase chain reaction (PCR) and/or PCR-restriction fragment length polymorphism (RFLP) methods. The patients were divided into three groups: those with a mild or severe infection; those who died or lived at the 28-day follow-up; those who required inpatient treatment or intensive care. There were 87 women (43.5%) and 113 men (56.5%) in the patient group. Hypertension was the most common comorbidity (26%). In the patient group, XRCC4 rs6869366 G/G genotype and G allele frequency were increased compared to controls, while XRCC4 rs6869366 G/T and T/T genotype frequencies were found to be higher in controls compared to patients. For XRCC1 rs25487, the A/A and A/G genotypes were significantly associated with COVID-19 disease. All of the patients hospitalized in the intensive care unit had the XRCC4 rs6869366 G/G genotype. In this study, we evaluated for the first time the impact of DNA repair gene variants on COVID-19 susceptibility. Results suggested that XRCC4 rs6869366 and XRCC1 rs25487 were associated with COVID-19 suspectibility and clinical course.


Subject(s)
COVID-19 , DNA-Binding Proteins , Male , Humans , Female , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , COVID-19/genetics , Genotype , Gene Frequency , DNA Repair/genetics , Disease Progression , Polymorphism, Single Nucleotide , Case-Control Studies , X-ray Repair Cross Complementing Protein 1/genetics
7.
Med Clin (Barc) ; 160(11): 489-494, 2023 06 09.
Article in English, Spanish | MEDLINE | ID: covidwho-2181515

ABSTRACT

BACKGROUND AND OBJECTIVES: The COVID-19 pandemic that emerged in China in late 2019 and spread rapidly around the world. There is evidence that COVID-19 infection can be influenced by genetic variations in the host. The aim of this study was to investigate the association between ACE InDel polymorphism and COVID-19 in Northern Cyprus. PATIENTS AND METHODS: This study included 250 patients diagnosed with COVID-19 and 371 healthy controls. Genotyping for the ACE InDel gene polymorphism was performed by polymerase chain reaction. RESULTS: The frequency of ACE DD homozygotes was significantly increased in COVID-19 patients compared to the control group (p=0.022). The difference in the presence of the D allele between the patient and control groups was statistically significant (57.2% and 50.67%, respectively, p<0.05). Individuals with the genotype II were found to have a higher risk of symptomatic COVID-19 (p=0.011). In addition, chest radiographic findings were observed more frequently in individuals with the genotype DD compared to individuals with the genotypes ID and II (p=0.005). A statistically significant difference was found when the time of onset of symptoms for COVID-19 and duration of treatment were compared with participants' genotypes (p=0.016 and p=0.014, respectively). The time of onset of COVID-19 was shorter in individuals with the genotype DD than in individuals with the genotype II, while the duration of treatment was longer. CONCLUSION: In conclusion, the ACE I/D polymorphism has the potential to predict the severity of COVID-19.


Subject(s)
COVID-19 , Pandemics , Humans , Peptidyl-Dipeptidase A/genetics , COVID-19/genetics , Polymorphism, Genetic , Genotype , Angiotensins , Gene Frequency
8.
Lancet ; 400(10355): 798, 2022 09 10.
Article in English | MEDLINE | ID: covidwho-2184635
9.
Immunobiology ; 227(6): 152301, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2119151

ABSTRACT

Coronavirus disease-19 (COVID-19) has recently emerged as a respiratory infection with a significant impact on health and society. The pathogenesis is primarily attributed to a dysregulation of cytokines, especially those with pro-inflammatory and anti-inflammatory effects. Interleukin-38 (IL-38) is a recently identified anti-inflammatory cytokine with a proposed involvement in mediating COVID-19 pathogenesis, while the association between IL38 gene variants and disease susceptibility has not been explored. Therefore, a pilot study was designed to evaluate the association of three gene variants in the promoter region of IL38 gene (rs7599662 T/A/C/G, rs28992497 T/C and rs28992498 C/A/T) with COVID-19 risk. DNA sequencing was performed to identify these variants. The study included 148 Iraqi patients with COVID-19 and 113 healthy controls (HC). Only rs7599662 showed a significant negative association with susceptibility to COVID-19. The mutant T allele was presented at a significantly lower frequency in patients compared to HC. Analysis of recessive, dominant and codominant models demonstrated that rs7599662 TT genotype frequency was significantly lower in patients than in HC. In terms of haplotypes (in order: rs7599662, rs28992497 and rs28992498), frequency of CTC haplotype was significantly increased in patients compared to HC, while TTC haplotype showed significantly lower frequency in patients. The three SNPs influenced serum IL-38 levels and homozygous genotypes of mutant alleles were associated with elevated levels. In conclusion, this study indicated that IL38 gene in terms of promoter variants and haplotypes may have important implications for COVID-19 risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , Genotype , Pilot Projects , Iraq , Case-Control Studies , Promoter Regions, Genetic/genetics , Polymorphism, Single Nucleotide , Alleles , Haplotypes , Cytokines/genetics , Interleukins/genetics , Genetic Predisposition to Disease , Gene Frequency
10.
Front Immunol ; 13: 856497, 2022.
Article in English | MEDLINE | ID: covidwho-2009860

ABSTRACT

Allelic diversity of human leukocyte antigen (HLA) class II genes may help maintain humoral immunity against infectious diseases. In this study, we investigated germline genetic variation in classical HLA class II genes and employed a systematic, unbiased approach to explore the relative contribution of this genetic variation in the antibody repertoire to various common pathogens. We leveraged a well-defined cohort of 800 adults representing the general Arab population in which genetic material is shared because of the high frequency of consanguineous unions. By applying a high-throughput method for large-scale antibody profiling to this well-defined cohort, we were able to dissect the overall effect of zygosity for classical HLA class II genes, as well as the effects associated with specific HLA class II alleles, haplotypes and genotypes, on the antimicrobial antibody repertoire breadth and antibody specificity with unprecedented resolution. Our population genetic studies revealed that zygosity of the classical HLA class II genes is a strong predictor of antibody responses to common human pathogens, suggesting that classical HLA class II gene heterozygosity confers a selective advantage. Moreover, we demonstrated that multiple HLA class II alleles can have additive effects on the antibody repertoire to common pathogens. We also identified associations of HLA-DRB1 genotypes with specific antigens. Our findings suggest that HLA class II gene polymorphisms confer specific humoral immunity against common pathogens, which may have contributed to the genetic diversity of HLA class II loci during hominine evolution.


Subject(s)
Antibodies , Genes, MHC Class II , HLA Antigens , Adaptive Immunity/genetics , Adult , Alleles , Antibodies/genetics , Gene Frequency , Genes, MHC Class II/genetics , HLA Antigens/genetics , Haplotypes , Humans
11.
Int J Immunogenet ; 49(4): 243-253, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1937936

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the pathogenesis is unclear. Host genetic background is one of the main factors influencing the patients' susceptibility to several viral infectious diseases. This study aimed to investigate the association between host genetic polymorphisms of two genes, including vitamin D receptor (VDR) and vitamin D binding protein (DBP), and susceptibility to COVID-19 in a sample of the Iranian population. This case-control study enrolled 188 hospitalized COVID-19 patients as the case group and 218 suspected COVID-19 patients with mild signs as the control group. The VDR (rs7975232, rs731236 and rs2228570) and DBP (rs7041) gene single nucleotide polymorphisms (SNPs) were genotyped by Polymerase Chain Reaction Restriction - Fragment Length Polymorphism (PCR-RFLP) method. A significant association between rs2228570 SNP in the VDR gene and the susceptibility of COVID-19 was found between case and control groups. The CT genotype (Heterozygous) of rs2228570 C > T polymorphism showed significant association with a 3.088 fold increased odds of COVID-19 (p < .0001; adjusted OR: 3.088; 95% CI: 1.902-5.012). In addition, a significant association between CC genotype of rs2228570 CT polymorphism and increased odds of COVID-19 in male and female groups (p = .001; adjusted OR: 3.125; 95% CI: 1.630-5.991 and p = .002; adjusted OR: 3.071; 95% CI: 1.485-6.354 respectively) were determined. Our results revealed no significant differences in the frequency of genotype and allele of VDR (rs7975232 and rs731236) and DBP (rs7041) between SARS-CoV-2-infected patients and controls (p > .05). Our results showed that polymorphism of VDR (rs2228570) probably could influence individual susceptibility to COVID-19. The polymorphisms of VDR (rs7975232 and rs731236) and DBP (rs7041) were not associated with SARS-CoV-2 infection susceptibility.


Subject(s)
COVID-19 , COVID-19/genetics , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Iran/epidemiology , Male , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , SARS-CoV-2
12.
Clin Immunol ; 238: 108990, 2022 05.
Article in English | MEDLINE | ID: covidwho-1894873

ABSTRACT

HLA is a polymorphic antigen presenter which has provided valuable information on the susceptibility of populations to viruses. Therefore, the study of HLA can reveal specific susceptibility or resistance alleles to severe COVID-19 in an ethnically dependent manner. This pilot study investigated HLA alleles associated with COVID-19 severity in Tapachula, Chiapas, Mexico. A total of 146 Mexican Mestizos were typed for HLA class I and II using PCR-SSP. The patients were classified according to the outcome (death or improvement) and the infection's severity (mild or severe). In addition, a group of exposed uninfected individuals was included. HLA-A*68 was found to be a protective allele against the severe infection and fatal outcome; pC = 0.03, OR = 0.4, 95% CI =0.20-0.86, and pC =0.009, OR = 0.3, 95% CI =0.13-0.71 respectively. HLA-DRB1*03 also appears to be a protective factor against fatal outcome pC = 0.009, OR = 0.1, 95%IC = 0.01-0.66; however, the low frequency of this allele in the studied population limits the statistical power. The severity and fatal outcome of COVID-19 patients in Tapachula, Chiapas depend more on the lack of resistance than susceptibility HLA alleles.


Subject(s)
COVID-19 , HLA-A Antigens , Alleles , COVID-19/genetics , Gene Frequency , Genetic Predisposition to Disease , HLA-A Antigens/genetics , HLA-DRB1 Chains/genetics , Humans , Mexico/epidemiology , Pilot Projects
13.
Cells ; 11(11)2022 05 30.
Article in English | MEDLINE | ID: covidwho-1869482

ABSTRACT

HLA allelic distribution was analysed in a cohort of 96 Northern Italian subjects (53M/43F) (mean age 59.9 ± 13.3 years) from Lombardy who developed COVID-19 during the first two pandemic waves to investigate possible correlations between HLA molecules and disease severity. An important role of HLA- B and HLA-C loci in modulating the clinical severity of COVID-19 disease was identified. In particular, the HLA-B07 supertype was observed to be associated with a significant risk for severe disease; conversely, the HLA-B27 supertype and C*12:02 allele played a protective role as they were associated with milder disease. These associations were confirmed after applying a multinomial regression analysis to adjust the correlation for age, gender and comorbidities with COVID-19 severity. Though the power of results is limited by the small sample size, data herein contribute to shedding light on the role played by genetic background in COVID-19 infection.


Subject(s)
COVID-19 , HLA-B Antigens , HLA-C Antigens , Aged , Alleles , COVID-19/genetics , Gene Frequency , HLA-B Antigens/genetics , HLA-C Antigens/genetics , Humans , Italy , Middle Aged , Pandemics , SARS-CoV-2
14.
Hum Immunol ; 83(7): 547-550, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1814486

ABSTRACT

In this population-based case-control study conducted in the Chelyabinsk region of Russia, we examined the distribution of HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1, in a group of 100 patients with confirmed COVID-19 bilateral pneumonia. Typing was performed by NGS and statistical calculations were carried out with the Arlequin program. HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 alleles were compared between patients with COVID-19 and 99 healthy controls. We identified that COVID-19 susceptibility is associated with alleles and genotypes rs9277534A (disequilibrium with HLA-DPB1*02:01, -02:02, -04:01, -04:02, -17:01 alleles) with low expression of protein products HLA-DPB1 (pc < 0.028) and homozygosity at HLA-C*04 (p = 0.024, pc = 0.312). Allele HLA-A*01:01 was decreased in a group of patients with severe forms of bilateral pneumonia, and therefore it may be considered as a protective factor for the development of severe symptoms of COVID-19 (p = 0.009, pc = 0.225). Our studies provide further evidence for the functional association between HLA genes and COVID-19.


Subject(s)
COVID-19 , Histocompatibility Antigens Class I , Alleles , COVID-19/genetics , COVID-19/immunology , Case-Control Studies , Gene Frequency , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-B Antigens/genetics , HLA-B Antigens/immunology , HLA-C Antigens/genetics , HLA-C Antigens/immunology , HLA-D Antigens/genetics , HLA-D Antigens/metabolism , Haplotypes , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans
15.
Cytokine ; 154: 155889, 2022 06.
Article in English | MEDLINE | ID: covidwho-1797004

ABSTRACT

BACKGROUND: Emerged coronavirus disease 2019 (COVID-19) is a pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Disease severity is associated with elevated levels of proinflammatory cytokines, such as interleukin-6 (IL-6). Genetic polymorphisms in the regulatory regions of cytokine genes may be associated with differential cytokine production in COVID-19 patients. This study aimed to investigate the association between three potentially functional single-nucleotide polymorphisms (SNPs) in the promoter region of IL-6 and the severity of susceptibility to COVID-19 in an Iranian population. METHODS: In total, 346 individuals (175 patients with severe COVID-19 and 171 patients with mild COVID-19) were recruited for this cohort study. Genomic DNA was extracted from peripheral blood leukocytes of patients to determine the genotypes of three selected SNPs (rs1800795 (-174 G > C), rs1800796 (-572 G > C), and rs1800797 (-597 G > A)) in the promoter region of the IL-6 gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: There were no significant differences in the genotype or allele distribution of selected SNPs (rs1800795 (-174 G > C), rs1800796 (-572 G > C), and rs1800797 (-597 G > A)) in the promoter region of the IL-6 gene in patients with severe COVID-19 and patients with mild COVID-19. DISCUSSION: Our study indicated that these SNPs are not associated with COVID-19 severity in the Kurdish population from Kermanshah, Iran.


Subject(s)
COVID-19 , Interleukin-6 , Polymorphism, Single Nucleotide , COVID-19/genetics , COVID-19/pathology , Case-Control Studies , Cohort Studies , Cytokines/genetics , Gene Frequency/genetics , Genetic Predisposition to Disease , Genotype , Humans , Interleukin-6/genetics , Iran/epidemiology , SARS-CoV-2
16.
Egypt J Immunol ; 29(2): 1-9, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1790704

ABSTRACT

SARS-CoV-2 is the causative agent of coronavirus disease started in 2019 (COVID-19). IL-6 gene is located on chromosome 7. A considerable number of polymorphisms was identified in the IL-6 gene. Polymorphism in IL-6-174C allele is associated with a higher level of IL-6 production and this may lead to severity of in COVID-19 patients. We intended to investigate the role of polymorphism in the promotor region of IL-6 gene as a predictor for disease severity in COVID-19 patients. Fifty patients diagnosed with COVID-19 and classified into moderate and severe groups and twenty apparently healthy controls were enrolled in the study. Genotyping for IL-6 gene (-174G/C) was done by using TaqMan SNP genotyping assay for all studied groups. The distribution of different IL-6-174G/C genotypes among COVID-19 patients was 76% for GG genotype, 22% for GC genotype and 2% for CC genotype. Whereas the distribution of genotypes among the control group was 80% for GG genotype, 20% for GC genotype and 0.0% for CC genotype. The G allele distribution was 87% and 90% in the patients and control groups, respectively, while the C allele was 13% and 10% in the patients and control groups, respectively. There was no significant statistical association between different genotypes, severity and treatment outcome in the patients group. In conclusion, this study showed no relation between -174G/C IL-6 gene polymorphism and disease, in COVID-19 patients. Keywords: Interleukin-6, Promotor region, Polymorphism, COVID-19, Severity.


Subject(s)
COVID-19 , Interleukin-6/genetics , COVID-19/genetics , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , SARS-CoV-2
17.
PLoS Comput Biol ; 18(2): e1009726, 2022 02.
Article in English | MEDLINE | ID: covidwho-1753172

ABSTRACT

The massive assessment of immune evasion due to viral mutations that increase COVID-19 susceptibility can be computationally facilitated. The adaptive cytotoxic T response is critical during primary infection and the generation of long-term protection. Here, potential HLA class I epitopes in the SARS-CoV-2 proteome were predicted for 2,915 human alleles of 71 families using the netMHCIpan EL algorithm. Allele families showed extreme epitopic differences, underscoring genetic variability of protective capacity between humans. Up to 1,222 epitopes were associated with any of the twelve supertypes, that is, allele clusters covering 90% population. Next, from all mutations identified in ~118,000 viral NCBI isolates, those causing significant epitope score reduction were considered epitope escape mutations. These mutations mainly involved non-conservative substitutions at the second and C-terminal position of the ligand core, or total ligand removal by large recurrent deletions. Escape mutations affected 47% of supertype epitopes, which in 21% of cases concerned isolates from two or more sub-continental areas. Some of these changes were coupled, but never surpassed 15% of evaded epitopes for the same supertype in the same isolate, except for B27. In contrast to most supertypes, eight allele families mostly contained alleles with few SARS-CoV-2 ligands. Isolates harboring cytotoxic escape mutations for these families co-existed geographically within sub-Saharan and Asian populations enriched in these alleles according to the Allele Frequency Net Database. Collectively, our findings indicate that escape mutation events have already occurred for half of HLA class I supertype epitopes. However, it is presently unlikely that, overall, it poses a threat to the global population. In contrast, single and double mutations for susceptible alleles may be associated with viral selective pressure and alarming local outbreaks. The integration of genomic, geographical and immunoinformatic information eases the surveillance of variants potentially affecting the global population, as well as minority subpopulations.


Subject(s)
COVID-19 , Genome, Viral , Immune Evasion , Mutation , SARS-CoV-2 , COVID-19/immunology , COVID-19/virology , Epitopes/genetics , Epitopes/immunology , Gene Frequency , Genome, Viral/genetics , Genome, Viral/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Mutation/genetics , Mutation/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Proteins/genetics , Viral Proteins/immunology
18.
Hum Immunol ; 83(6): 521-527, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1739765

ABSTRACT

Human leukocyte antigen (HLA)-G molecules are proposed to influence susceptibility to coronavirus disease 2019 (COVID-19). A case-control study was conducted on 209 patients with COVID-19 and198 controls to assess soluble HLA-G (sHLA-G) levels and HLA-G 14-bp insertion [Ins]/deletion [Del] polymorphism. Results revealed that median levels of sHLA-G were significantly higher in serum of COVID-19 patients than in controls (17.92 [interquartile range: 14.86-21.15] vs. 13.42 [9.95-17.38] ng/mL; probability <0.001). sHLA-G levels showed no significant differences between patients with moderate, severe or critical disease. Del allele was significantly associated with the risk of COVID-19 (odds ratio = 1.89; 95% confidence interval = 1.44-2.48; corrected probability = 0.001), while a higher risk was associated with Del/Del genotype (odds ratio = 2.39; 95% confidence interval = 1.25-4.58; corrected probability = 0.048). Allele and genotype frequencies of HLA-G 14-bp Ins/Del polymorphism stratified by gender or disease severity showed no significant differences in each stratum. Further, there was no significant impact of genotypes on sHLA-G levels. In conclusion, sHLA-G levels were up-regulated in COVID-19 patients regardless of disease severity. Further, it is suggested that HLA-G 14-bp Ins/Del polymorphism is associated with COVID-19 risk.


Subject(s)
COVID-19 , HLA-G Antigens , INDEL Mutation , COVID-19/genetics , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Genotype , HLA-G Antigens/genetics , Humans , Iraq
19.
Hum Immunol ; 83(1): 1-9, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1719801

ABSTRACT

The class I and class II Human Leucocyte Antigens (HLA) are an integral part of the host adaptive immune system against viral infections. The characterization of HLA allele frequency in the population can play an important role in determining whether HLA antigens contribute to viral susceptibility. In this regard, global efforts are currently underway to study possible correlations between HLA alleles with the occurrence and severity of SARS-CoV-2 infection. Specifically, this study examined the possible association between specific HLA alleles and susceptibility to SARS-CoV-2 in a population from the United Arab Emirates (UAE). The frequencies of HLA class I (HLA-A, -B, and -C) and HLA class II alleles (HLA-DRB1 and -DQB1); defined using Next Generation Sequencing (NGS); from 115 UAE nationals with mild, moderate, and severe SARS-CoV-2 infection are presented here. HLA alleles and supertypes were compared between hospitalized and non-hospitalized subjects. Statistical significance was observed between certain HLA alleles and supertypes and the severity of the infection. Specifically, alleles HLA-B*51:01 and HLA-A*26:01 showed a negative association (suggestive of protection), whilst genotypes HLA-A*03:01, HLA-DRB1*15:01, and supertype B44 showed a positive association (suggestive of predisposition) to COVID-19 severity. The results support the potential use of HLA testing to differentiate between patients who require specific clinical management strategies.


Subject(s)
COVID-19/genetics , HLA Antigens/genetics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Female , Gene Frequency , Genetic Predisposition to Disease , HLA Antigens/immunology , Haplotypes , Host-Pathogen Interactions , Humans , Male , Middle Aged , Protective Factors , Risk Assessment , Risk Factors , SARS-CoV-2/pathogenicity , Severity of Illness Index , United Arab Emirates , Young Adult
20.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715409

ABSTRACT

We propose a new hypothesis that explains the maintenance and evolution of MHC polymorphism. It is based on two phenomena: the constitution of the repertoire of naive T lymphocytes and the evolution of the pathogen and its impact on the immune memory of T lymphocytes. Concerning the latter, pathogen evolution will have a different impact on reinfection depending on the MHC allomorph. If a mutation occurs in a given region, in the case of MHC allotypes, which do not recognize the peptide in this region, the mutation will have no impact on the memory repertoire. In the case where the MHC allomorph binds to the ancestral peptides and not to the mutated peptide, that individual will have a higher chance of being reinfected. This difference in fitness will lead to a variation of the allele frequency in the next generation. Data from the SARS-CoV-2 pandemic already support a significant part of this hypothesis and following up on these data may enable it to be confirmed. This hypothesis could explain why some individuals after vaccination respond less well than others to variants and leads to predict the probability of reinfection after a first infection depending upon the variant and the HLA allomorph.


Subject(s)
COVID-19/immunology , HLA Antigens/immunology , Polymorphism, Genetic/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19/virology , Evolution, Molecular , Gene Frequency , HLA Antigens/genetics , HLA Antigens/metabolism , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Mutation/genetics , Mutation/immunology , Pandemics , Peptides/immunology , Peptides/metabolism , Polymorphism, Genetic/genetics , SARS-CoV-2/physiology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL